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OPTIMIZATION IN ANALYTICAL CHEMISTRY USING ROBUST ESTIMATION

*
Gregory R. Phillips and Edward M. Eyring
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112
(801) 581-8658

ABSTRACT

Analytical chemists have long been concerned with obtaining optimal
experimental conditions. Robust estimation provides an additional method of
increasing the efficiency of an analytical technique. This is illustrated
for the determination of the "true" value, u, of a quantity which is
measured with error. The least squares estimator of y is compared with the
median and Huber estimates over a variety of error distributions in the
vicinity of the Gaussian distribution. Simulation allows examination of the
efficiency of an estimation procedure as a function of the error

distribution. Results are presented which show the least squares estimator

of u to be much more sensitive to a non-Gaussian error distribution than —-—1»-«
generally realized in the chemical community. Additionally, the arguments K
)
commonly used to support least squares estimation are critically examined. Ul
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INTRODUCTION

Experimental optimization has been an important subject in analytical
chemistry for many years now. This term often, though not always, suggests
a technique for increasing the precision of analytical measurements (e.g.
increased sensitivity, improved reliability, or decreased cost). Examples
of optimization in chemistry range from the development of self-optimizing
instruments(l) to the use of expert systems in methods development(2).

The efficiency of an analytical technique depends on more than just the
precision of the measurement process. Eckschlager and Stepanek(3) have
characterized an analytical system as two relatively independent subsystems.
In the first of these two subsystems, an analytical apparatus extracts
information from a sample and encodes it in an anmalytical signal (e.g.
voltage); in the second, this signal is decoded to yield information. The
information gained from a chemical analysis depends on the efficiency of the
overall system, and can be limited by either of the two subsystems. Most of
the optimization done in analytical chemistry has been concerned with the
first subsystem.

The problem of decoding analytical signals iies within the reaim of
chemometrics, which has been defined as the discipline of using mathematical
and statistical techniques to extract information from measurements(4).
Chemists often associate chemometrics with sophisticated multidimensional
techniques, expert systems, or artificial intelligence. In spite of very
elegant work in these areas, the vast majority of chemometric techniques
actually used in chemical laboratories are simple univariate statistics,
such as least squares estimates of the mean, standard deviation, or
regression coefficients. These statistics are usually justified in

analytical texts by the assumption of Gaussian, or normal, errors.




The importance of the normal error distribution to least squares
techniques, along with the consequences of departures from this assumption,
has received much attention from statisticians; however, most chemists seem
to be largely unaware of its importance. Ames and Szonyi(5) and Filliben(6)
have warned of the possibility of drawing incorrect conclusions when the
normality assumption is violated, and have proposed the testing of error
distributions. Tests for normality require many more observations than are
generally available in chemical experiments. £ven when an adequate number
of data points is available, it is most unusual for a chemist to apply any
normality test. Studies in enzyme kinetics have both supported(7,8) and
contradicted(9-11) the assumption of normal error distributions in chemical
data. In a particularly impressive study, Clancy(12) has examined 250 error
distributions based on 50,000 chemical analyses and found less than 15% of
the distributions can be considered normal for the purpose of applying
common statistical techniques.

Many statistics books for the research worker deal exclusively with
least squares methods, and only invoke the assumption of independent,
normally distributed errors for the validity of confidence intervals and
statistical tests calculated using least squares results. Thus it is not
surprising that many chemists believe least squares estimates are the

optimum statistics whatever the error distribution. The efficiency of these

estimates rapidly decreases under mild departures from normality, as has
been demonstrated by several recent studies and is discussed in further
detail below. In terminology familiar to the analytical chemist, nonnormal
errors can lead to poor precision in Teast squares parameter estimates and

inaccuracy in statistical tests and confidence intervals.

e T e ¥

ey et




Much work is currently underway in statistics in the development of
robust estimation, as illustrated by references 13-15. A statistic is
called robust if it is insensitive to mild departures from the underlying
assumptions and is only slightly inefficient relative to least squares when
these assumptions are true. This inefficiency under ideal circumstances is
often referred to as the premium paid for protection under nonideal
conditions. Additionally, robust methods are also resistant to the presence
of any outliers in the data. Unlike statisticians, chemists have paid only
passing attention to these developments. Isenburg(16) has proposed the
method of moments as an alternative to least squares iterative reconvolution
in the analysis of pulse fluorometric data. Phillips and Eyring(17) and
Massart et al.(18) have compared the performance of least squares regression
and robust regression, concluding that robust regression often outperforms
least squares regression in the analysis of chemical data. The main
emphasis behind these articles has been the insensitivity of robust
estimation to a small number of errors in the data.

The present paper is concerned with robust estimation as a method of
increasing the efficiency of an analytical technique. This can best be
i1lustrated by the estimation of the "true* value, u, of a quantity which is
measured with error. For example, this may be the concentration of Pb in
drinking water. The least squares estimator of y is compared with robust
estimates over a variety of realistic error distributions in chemistry.
Simulation allows examination of the efficiency of an estimation procedure
as a function of the error distribution. Additionaly, the arguments

commonly used to support least squares estimation are critically examined.
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EXPERIMENTAL
Robust estimation The least squares estimate of y is the arithmetic
mean. This is often denoted by X and referred to simply as the mean. A
robust estimate of uy can be obtained from the weighted mean of the
observations using the Huber weight function. This is not the only method
of robust estimation, nor necessarily the best, but will serve to
i1lustrate the potential advantages of robust estimation. This approach is

also conceptually simple and easy to implement.

Ly w;x
£ e 1 7174 (1)
n
Huber's weight function is defined by
1 Irl < kS
W = (2)
(kS)/Iri lr] > kS

where r is the residual (i.e., difference between observed and predicted
responses), k (the tuning constant) determines how harshly large residuals
are treated, and S is an estimate of the standard deviation. The
evaluation of weights requires an estimate of y. The initial estimate used
in the present work is the median.

The most common measure of standard deviation is the root mean square
of the residuals. This is the optimal estimator for a normal error
distribution, but rapidly loses its advantages over other estimators under
even slight deviations from normality(19). Additionally, a single large

residual can drastically change the value of the estimator. The measure of
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-' standard deviation used in the present work is the normalized median of the

;é; absolute deviations:

Ly

S = 1.48 + median{|r,l) (3)

|

;&k Figure 1 shows a graph of Huber's weight with k=1.5 as a function of

N the residual normalized by the standard deviation. Observations within 1.5

ééz standard deviations of the predicted value receive full weight. (For a

gaf normal error distribution, 87% of the errors fall in this region(20).)

:J Observations outside this range receive smaller weights as they become less

:Eg consistent with the remaining observations. The choice of a value for k is

é,ﬁ a compromise between two opposing tendencies: smaller values of k are more

’ efficient for non-Gaussian errors, but less efficient when the errors are

g}; actually from a Gaussian distribution(14).

gg Simulated Data Four hundred different error distributions were

Q? simulated on a VAX 8300 computer. Each distribution is a combination of

ié two Gaussian distributions:

e

i

g e = (1-a) N(0,1) + a C N(0,1) (4)

i

.§§ where a is the probability of contamination, C is the degree of

_i contamination, and N(0,1) denotes the standard normal error distribution.

gﬂﬁ These error distributions, referred to as contaminated normals, are a

g; mixture of observations from a normal error distribution with o = 1 with

R probability 1-a and from an error distribution with o = C with a

?E: probability of a. Values of C less than, equal to, and greater than one

E; correspond to error distributions narrower than, identical to, and wider

L.
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than the standard normal (i.e. Gaussian) distribution. This work used
values in the range 0 < a < 0.20 and 0 < C < 6. Figure 2 presents the
ideal error distribution and the most extreme distribution used. The use
of the standard normal as a reference is completely general and does not
affect the conclusions reached.

Gaussian errors were generated by combining the methods of Wichmann
and Hi11(21) and Beasly and Springer(22). Three simple multiplicative
congruential generators produce numbers uniformly distributed between 0 and
1. These random numbers are transformed into normal random deviates by the
method of Beasly and Springer. Both algorithms are written in FORTRAN, and
are machine-independent. A histogram of 1000 simulated errors is shown in
Figure 3, along with the theoretical distribution. Agreement between the

two is excellent.

RESULTS

This paper considers three statistics, each of which is a valid
estimator of u. However, each statistic is not equally effective in
extracting the information encoded in analytical signals. Each estimator
is a function of several random variables, and is therefore a random
variable itself. By repeatedly simulating sets of "experimental
measurements”, it is possible to generate the distribution of the estimates
themselves.

For each error distribution, 5000 simulated data sets (each containing
10 observations) were analyzed by the arithmetic mean, median, and H1S
estimators. (H15 is shorthand notation for the weighted mean using Huber

weights with k = 1.5.) The variance of each procedure was evaluated for
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each error distribution (i.e. each combination of a and C). For example,
Yy the variance of the arithmetic mean is given by

e 5000

Var(mean;a,C) = DN (i1 - u)2 / 5000 (5)

{ The efficiency of the Huber and median estimators are defined relative to

the arithmetic mean by

4
é% Eff (H15;a,C) = Var(mean;a,C)/Var(H15;a,C) (6)
N
ﬁz Eff (median;a,C) = Var(mean;a,C)/Var(median;a,C) (7)
5
§§
The relative efficiencies of the H15 and median estimators are shown in
?% Figures 4 and 5, respectively. The increase in precision is particluarly
agl dramatic when the narrow range of distributions studied around exact
B Gaussian errors (see Figure 2) is considered. Each error distribution
st studied was "close" to Gaussian and symmetric. Intoduction of asymmetry
;55 would have further deteriorated the precision of the mean(14).
-+ The relative efficiency measures the precision of an estimator, such
fg as the Huber or median, relative to the mean for the same number of
i} observations. For an ideal Gaussian error distribution, the relative
- efficiencies of the H15 and median estimators would be ».95 and .67,
éﬁ respectively. Under the most exterme conditions studied in this work, the
:3€ relative efficiency of the H15 and median were 3.25 and 2.73. Thus, the
g variance of the estimated value of y using the arithmetic mean is 3.25
g& times that of the Huber estimator, on the average.
;
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Figure 6 shows a contour plot of the relative efficiency of the H15
estimator as a function of the probability of contamination and degree of
contamination. Dashed contours denote regions where the arithmetic mean is
more precise, while solid 1ines denote regions where the H15 estimator is
more precise. In view of the greatly enhanced precision of robust
estimation under slight deviations from normality, the small premium under
ideal conditions appears quite worth the improved efficiency of robust

estimation under nonideal conditions.

DISCUSSION

The prevalent attitude among chemists seems to be that rejection of
erratic data points provides sufficient protection against nonnormal error
distributions and justifies the automatic use of least squares procedures.
The reasons given in support of least squares estimators deserve
examination. Least squares statistics are easy to compute; in fact, this
was one reason for the historical acceptance of least squares. However,
with the proliferation of laboratory microcomputers, or even pocket
calculators, ease of computation is no longer of primary importance.

A second reason for the widespread belief in least squares is a result
of a misintrepretation of the Gauss-Markov theorem(23). This theorem
states that the best linear unbiased estimate of pu is the sample mean,
whatever the error distribution. This is frequently intrepreted by
nonstatisticians to mean that the sample mean is the best of all
estimators. The important words in the Gauss-Markov theorem are linear and
unbiased. A linear estimator is one which is a linear combination of the

observed values. However, their is no inherent reason to require
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linearity. As has been shown, insistence on linearity can result in a loss
of precision.

Since least squares is the optimum estimation procedure for normally
distributed errors, a third argument is that it should be almost optimum
when the errors are approximately normal. The Central Limit Theorem states
that the sum of a “"large" number of independent random variables (i.e.,
errors) is approximately normal regardless of the distribution of the
individual random variables(20). Experimental errors are the sum of many
small independent errors. However, these small errors often have widely
different variances and the "approximately" normal distribution of their
sum is closer to a long-tailed distribution. Studies over the past 15
years have shown the arithmetic mean to be significantly less efficient in
these situations. The error distributions used in this work have only
slightly longer tails than the normal distribution, yet clearly demonstrate
the loss of precision in the arithmetic mean.

Finally, it is interesting to compare the present relationship between
the arithmetic mean and the normal error distribution with the historical
relationship. Gauss(23) introduced the normal, or Gaussian, error
distribution in 1821. He argued that it was impossible to determine the
most probable value of an unknown quantity unless its error distribution
was known. Without such knowledge, the only recourse was to assume a
distribution in a "hypothetical" fashion. Gauss preferred to take the
opposite approach and to look for that distribution which would make the
arithmetic mean the best estimator. Thus, the arithmetic mean was used to
justify the normal error distribution.

The method of least squares has proven very useful for many years.

This procedure is often motivated as being the maximum 1ikelihood estimator

adhe Aa ot L ai |




for a Gaussian error distribution. Methods for robust estimation do not
represent an abandonment of traditional data reduction procedures.
Estimation using robust weights is attractive since it represents the
maximum likelihood estimator over a range of distributions in the
"vicinity" of Gaussian. Thus, the attractive features of the Huber
estimator do not depend on the existence of an idealized error

distribution.

CONCLUSION

Techniques based on the principle of least squares are the optimal
estimation procedures for the analysis of data possessing a normal error
distribution, but perform very poorly in situations involving a nonnormal
error distribution (see, e.g., reference 14). Almost every aspect of the
measurement process has been examined during optimization procedures.
However the validity of the assumption of normal errors has received little
attention from chemists. The present work has demonstrated that even small
deviations from normality can seriously degrade the efficiency of least
squares estimators. Only symmetric error distributions have been examined
here (more serious problems arise when the error distribution becomes
asymmetric.) The deviations are so small as to frequently occur in
practice. The effect of this can be to decrease the precision of an
analytical method or instrument which has been carefully optimized.

Robust estimation is a complementary technigue which is relatively
efficient over a broad range of error distributions. This approach takes
advantage of the "a priori" knowledge that errors in chemistry 1ie within a
range of distributions, while avoiding the inefficiency which results from

rigid assumptions about the error distribution. These procedures more
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closely reflect real situations, recognizing that even in careful work the
distribution of errors is not always ideal. Robust procedures do not
change the focus of data analysis, rather they are an efficient alternate
method of accomplishing traditional goals. The exact robust procedure used
is not as important as the use of some robust method. This can be a newer
robust approach, such as the Huber weight function, or a more traditional
method of examining the validity of least sqaures.

Robust methods should not be regarded as a completely automatic
procedure or a substitute for a reasonable amount of statistical knowledge,
however. Measurements which have been assigned small robust weights have
been marked for special attention, including examination of the
appropriateness of the error model as well as the possibility of erroneous
data points.

It is not the contention of this paper that improved statistical
techniques, such as robust estimation, are a substitute for good analytical
data. No statistical technique can extract high quality results from low
quality data. If the measurement process is not in control, an analyst
will benefit most by restoring the experimental conditions to their optimum
values. Conversely, when a measurement process is in control, analytical
precision can be limited by application of inefficient statistical
procedures. Robust estimation is one method of detecting incorrect

statistical models and/or error distributions. It has the advantages of

being easily implemented and understood.
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Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Plot of the Huber weight function with a tuning constant equal to
1.5. The dashed line is the probability density for the Gaussian
error function.

A plot of Gaussian error distribution ( ) and a contaminated
distribution with a = 0.20 and C = 6 (__ _ ).

Histogram of 1000 simulated errors. Superimposed is the
theoretical distribution for normal, or Gaussian, errors.

The relative efficiency of robust estimation using the Huber
weight function with k=1.5 as function of the probabiiity of
contamination, ¢, and the degree of contmaination, C.

The relative efficiency of the median estimator as function of
the probability of contamination, ¢, and the degree of
contmaination, C.

A contour plot of the relative efficiency of the H15 estimator on
contaminated normals. Dashed lines correspond to efficiencies
less than one; solid 1ines correspond to efficiencies greater
than one.
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